A biophysical study of integral membrane protein folding.

نویسندگان

  • J F Hunt
  • T N Earnest
  • O Bousché
  • K Kalghatgi
  • K Reilly
  • C Horváth
  • K J Rothschild
  • D M Engelman
چکیده

In order to characterize the thermodynamic constraints on the process of integral membrane protein folding and assembly, we have conducted a biophysical dissection of the structure of bacteriorhodopsin (BR), a prototypical alpha-helical integral membrane protein. Seven polypeptides were synthesized, corresponding to each of the seven transmembrane alpha-helices in BR, and the structure of each individual polypeptide was characterized in reconstituted phospholipid vesicles. Five of the seven polypeptides form stable transmembrane alpha-helices in isolation from the remainder of the tertiary structure of BR. However, using our reconstitution protocols, the polypeptide corresponding to the F helix in BR does not form any stable secondary structure in reconstituted vesicles, and the polypeptide corresponding to the G helix forms a hyperstable beta-sheet structure with its strands oriented perpendicular to the plane of the membrane. [The polypeptide corresponding to the C helix spontaneously equilibrates in a pH-dependent manner between a transmembrane alpha-helical conformation, a peripherally bound nonhelical conformation, and a fully water soluble conformation; the conformational properties of this polypeptide are the subject of the accompanying paper: Hunt et al. (1997) Biochemistry 36, 15177-15192.] Our observations suggest that the folding of alpha-helical integral membrane proteins may proceed spontaneously. However, the preference for a non-native conformation exhibited by two of the polypeptides suggests that the formation of some transmembrane substructures could require external constraints such as the links between the helices, interactions with the rest of the protein, or the involvement of cellular chaperones or translocases. Our results also suggest a strategy for improving the thermodynamic stability of alpha-helical integral membrane proteins, a goal that could facilitate attempts to overexpress and/or refold them.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computer simulations of membrane protein folding: structure and dynamics.

A lattice model of membrane proteins with a composite energy function is proposed to study their folding dynamics and native structures using Monte Carlo simulations. This model successfully predicts the seven helix bundle structure of sensory rhodopsin I by practicing a three-stage folding. Folding dynamics of a transmembrane segment into a helix is further investigated by varying the cooperat...

متن کامل

Folding and insertion of the outer membrane protein OmpA is assisted by the chaperone Skp and by lipopolysaccharide.

We have studied the folding pathway of a beta-barrel membrane protein using outer membrane protein A (OmpA) of Escherichia coli as an example. The deletion of the gene of periplasmic Skp impairs the assembly of outer membrane proteins of bacteria. We investigated how Skp facilitates the insertion and folding of completely unfolded OmpA into phospholipid membranes and which are the biochemical a...

متن کامل

In vitro unfolding and refolding of the small multidrug transporter EmrE.

The composition of the lipid bilayer is increasingly being recognised as important for the regulation of integral membrane protein folding and function, both in vivo and in vitro. The folding of only a few membrane proteins, however, has been characterised in different lipid environments. We have refolded the small multidrug transporter EmrE in vitro from a denatured state to a functional prote...

متن کامل

Quantifying kinetic paths of protein folding.

We propose a new approach to activated protein folding dynamics via a diffusive path integral framework. The important issues of kinetic paths in this situation can be directly addressed. This leads to the identification of the kinetic paths of the activated folding process, and provides a direct tool and language for the theoretical and experimental community to understand the problem better. ...

متن کامل

Optimizing synthesis and expression of transmembrane peptides and proteins.

Structural studies of full-length membrane proteins have been hindered by their hydrophobicity and low expression in a variety of systems. However, a simplifying aspect of membrane protein folding is that individual transmembrane segments or membrane protein fragments have been observed to represent independent folding domains, and as such, can facilitate the study of packing interactions betwe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biochemistry

دوره 36 49  شماره 

صفحات  -

تاریخ انتشار 1997